


FIX Antenna Java Failover Extension 1.0

RELEASE NOTES

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

Table of Contents
1 OVERVIEW... 3

1.1 PROBLEM INTRODUCTION ... 3
1.2 SOLUTION OVERVIEW .. 5

2 COMPONENTS AND EXTENSION STRUCTURE ... 7

2.1 EXTENSION OVERVIEW .. 7
2.1.1 Storage Service (fajfo-storage-service.jar) .. 7
2.1.2 Storage Service Client (fajfo-storage-srv-client.jar) ... 7
2.1.3 FIX Antenna Java Storage and Session implementations (fajfo-storage.jar) .. 7
2.1.4 Example “hello world” FIX-bases application (fajfo-example.zip) .. 7

2.2 CORE FRAMEWORKS/LIBRARIES OVERVIEW .. 8
2.2.1 Chronicle ... 8
2.2.2 Aeron ... 8

3 SOLUTION IMPLEMENTATION NOTES ... 9

3.1 OVERVIEW .. 9
3.2 LOGIC OVERVIEW IN FIX ANTENNA JAVA FAILOVER ... 11

3.2.1 REST API result aggregation in FIX Antenna Storage .. 11
3.2.2 FIX Storage Service states ... 12

4 NON-FUNCTIONAL .. 13

4.1 MANAGEABILITY .. 13
4.2 RELIABILITY ... 13
4.3 FIX ANTENNA JAVA LATENCY IMPACT .. 13

5 CONFIGURATION NOTES ... 14

5.1 FIX STORAGE ... 14
5.1.1 Storage: ... 14
5.1.2 Communication: .. 14

5.2 FIX ANTENNA JAVA ... 14

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

1 Overview

The purpose of this document is to provide an overview of POC results of FIX Engines Failover project. This
document will be updated in course of the extension development with further implementation, supporting and
maintenance related notes.

1.1 Problem introduction

In practice of FIX protocol-based system, all systems treat TCP/IP disconnects as implicit loss of FIX Session and
expect clients to send a logon message upon re-connect. When logging in, there are two options — a re-
connecting session may send the next outgoing sequence number or it may ask server to reset the sequence (to
1). In first case, the server side may send a logon acknowledgement if sequence is greater or equal to what it
expected, or close (or even reject) the session if the received sequence number is less than expected. Additionally,
if the sequence was greater than expected, server will issue a re-transmission. Client session monitors the
sequence of the server as well, and needs to request a re-transmission if it detects a gap (received sequence is
greater than expected). In the second case, if the server supports sequence reset, both in and out sequences are
reset to 1 and no messages are recovered.

But also there are possible specifics of the venue FIX clients connect to. For instance, the client TCP connection
should be switched to a failover FIX server. If a failover switch happens, usually a FIX server side fails to keep the
sequence number intact, and clients are left no choice but reset the sequence number.

Also there is problem in FIX practice of FIX protocol-based system to deliver asynchronously created FIX
messages to FIX client which is temporary in disconnected state. For instance, other components of a user
application just handled an order execution but FIX client appeared in disconnected state at the moment, so user
app can’t send this just generated mandatory message. Figure 1 below is FIX Message Sequence Diagram which
describes FIX protocol connectivity and mentioned above decision making.

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

Start

Connect
Network

OK?
Accept ConnectionTrue

FIX Application / Initiator User ApplicationFIX Antenna Java Acceptor & Failover Extension

Initiate Logon Receive Logon
Handle Connection/

Prepare Context
Handle Incoming FIX

Session

Accept?Reject FlowHandle RejectEnd No

Apply User
Application FIX
Session Rules

Load Session Params from
FAJ FO Service or FS

Yes

Load in/out SeqNums
from FAJ FO Service or FS

SeqNum reset?

Sequence Reset
Flow

Logon SeqNum

Send Logon Response

Reset (and backup)
Storage

Expected or high

Send Resend Request

high

Logout Flow

Low

Handle Logon
Response

Handle Resend
Request

SeqNum reset?

Handle SeqNum
reset

Logon SeqNum Logout Flow

Send Resend
Request

Normal Session
Flow

Expected

High

Low

Receive Resend Request
Extract FIX Messages from
FAJ FO services or from FS

Resend Requested
 FIX Messages

Handle FIX Messages
from gap

Initiate
disconnect

Send Logout Receive Logout

Abnormal
Disconnect

Handle Disconnect
Handle Disconnect in

User Application

Dispose Session

End

Send Logout

Ensure all FIX Messages
delivered to FAJ FO Storage

Service

Handle Disposed Session

Receive LogoutEnd
Put message to FAJ FO

storage which already in FIX
Session s disconnected state

User Application
async

BL Event

Figure 1 – FIX protocol sequence diagram

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

1.2 Solution Overview

B2BITS FIX Antenna Java (FAJ) is a FIX engine used by B2BITS customers on both initiator and acceptor sides. FAJ
has an abstract layer to implement pluggable standard and specific storages. This way customers are able to
enable required FIX Session persistence. For instance, FilesystemStorage stores and loads FIX Session properties,
messages and sequences to/from file system. In case of enabled persistent (e.g. mentioned file system based
persistence), it’s possible to re-login and continue FIX Session at the same host. However, to address problem
descried in the beginning, it was also decided to add distributed FIX Storage Service as a standalone component.
Also it was decided to add specific storage implementation, which extends logic of usual local persistence with
required distributed extension. This way it’s possible to create a specific setup in a customer application
environment, where FIX messages are stored not only locally, but also broadcasted to shared FIX Storages Services
via UDP. This is enabling ability to restore FIX session state already on another host (via provided JAX-RS client API),
including ability to resend required range of FIX messages. Also now it’s even possible to restore messages directly
from FIX Storage Service, without FIX protocol resend-related use cases.

OpenHFT Chronicle-Queue instances are to be used as FIX messages logs in FIX Storage Service. RealLogic Aeron
are to be used to implement delivery of FIX messages to FIX Storage Service from FIX application instances, based
on FAJ with enabled Failover Extension.

Figure 2 is a high level diagram pointing out main application blocks. The next sections will elaborate on all of the
components mentioned below.

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

FIX Host B

FIX Clients

FIXAJ - B

New

Storage

Publisher

UDP Channel

Storage Service B

FIX Sess ion

Properties

LOGS
Chronicle

Storage Service A

FIX Sess ion

Properties

LOGS

Chronicle

JA
X

-
R

S

Adaptor/ aeron

Adaptor / aeron

FIXAJ - B

Storage

Publisher

FIXAJ - B

Storage

Publisher

FIX Host A

FIXAJ - A

Storage

Publisher

FIXAJ - A

Storage

Publisher

Storage

Publisher

Old

FIXAJ - A

Aeron Media Driver Aeron Media Driver

JA
X

-
R

S

Resolver/
Aggregator

Ordered list of
Service Hosts

(priority) /Config

In/out sequence numbers;
FIX Session properties;

FIX msgs for resend reqs

CRaSH Console with JMX

Administrator

Figure 2 – High Level Solution Overview

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

2 Components and Extension structure

2.1 Extension overview

FIX Antenna Java Failover extension consists of number of sub modules.

2.1.1 Storage Service (fajfo-storage-service.jar)

Storage Service module contains implementation of distributed storage node based on Aeron and
Chronicle. Storage Service also exposes jersey based REST web service allowing access to session’s data
store.

Packages overview (prefix: com.epam.fixengine.failover.storage.service):

 storage – storage related interfaces (storage, cursor, factory, manager, remover)

 storage.remote – REST service with configuration and interface

 storage.chronicle – Chronicle based implementation of the above storage interfaces

 storage.nfsdb – NFSdb based implementation of the above storage interfaces

 storage.config – implementation specific configurations

2.1.2 Storage Service Client (fajfo-storage-srv-client.jar)

Module defines number of client interfaces along with Aeron based implementation.

It doesn’t have any business logic (filtering, data representation etc) on its own and basically needed as
an abstraction layer between FIXAJ extensions and storage service layer (see 2.1.1).

From client module perspective any potential client just has to implement the following interfaces:

 com.epam.fixengine.failover.storage.service.client.Publisher

 com.epam.fixengine.failover.storage.service.client.StorageService

2.1.3 FIX Antenna Java Storage and Session implementations (fajfo-storage.jar)

Module defines some extra strategies/services deployed on top of FIXAJ:

 Cluster Message Storage – implementation of FIXAJ MessageStorage interface calling
internally Storage Service Client through previously defined interfaces (see 2.1.2)

 FOFIXSession implementation and related factory which provided with ability to safely
shutdown FIX Session in FO enabled setup, also ability to “send” FIX messages in
already disconnected FIX Session (FIX message is to be added to FIX Storage Service
and later can be loaded from it during FIX resend scenarios or directly)

2.1.4 Example “hello world” FIX-bases application (fajfo-example.zip)

“Hello World” type of example which allows to run an FIX Storage Service, run two instances of example
FIX Servers (com.epam.fixengine.failover.example.SwitchableFIXServer, instances do not have shared file
based persistence), and finally execute com.epam.fixengine.failover.example.SimpleSwitchableClient,

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

which will exchange with first FIX Server and then continue the same FIX Session against second FIX
Server.

2.1.4.1 How to run example

Unpack fajfo-example-&version&.zip, go to bin directory:

 Run startStorage to start FIX Storage service

 Run startServer1 and then start Server2 to start two instances of SwitchableFIXServer instances, e.g.
startServer1 9992 and startServer2 9993

 Finally run an example, e.g. startExample localhost 9992 localhost 9993

2.2 Core frameworks/libraries overview

2.2.1 Chronicle

Chronicle is a Java project focused on building a persisted low latency messaging framework for high
performance and critical applications (see https://github.com/OpenHFT/Chronicle-Queue)

The following features were considered as relevant from project perspective:

- Off heap storage means no extra pressure (almost) on Hotspot GC

- Selective replication is possible

- High performance and indexed storage support in single write, multiple readers mode.

2.2.2 Aeron

Efficient reliable unicast and multicast message transport (see https://github.com/real-logic/Aeron).

Aeron built around the concept of media driver so effectively any other protocols (apart from already
supported) might be made available.

FXFO solution will be running a standalone version of Media driver per host. IPC wise Aeron client is
connected to Media driver via memory mapped files (ring buffer data structure).

https://github.com/OpenHFT/Chronicle-Queue
https://github.com/real-logic/Aeron

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

3 Solution Implementation Notes

This section elaborates on further implementation details of Aeron/Chronicle solution as it’s seen in FAJ FO
construction phase.

3.1 Overview

Storage ServiceI

FIX
LOGs /

Chronicle

FIX Message
Subscriber

Service
API / JAX

RS

Aeron
Media

Driver /
UDP

Service
handlers

CRaSH console / SSH

FIX Session
properties

FIXAJ

FIX Session

 FIXAJ IO Thread

FIXAJ Storage API

Cluster Storage Impl

Local FIXAJ Storage Impl

FIX Message Index
(if enabled)

FIX Messages /
File

Cluster Storage Factory and Storage Implementations

Storage Service Impl

FIXAJ Cfg Adaptor

FIXAJ Storage Impl Storage Service HA
Manager

FIX Message
Publisher

Filter API

FIX Session Realtime
State

Session State

Outgoing Seq
Num

Incoming Seq Num

FIX Session Constructor / Initiator /
Acceptor

Seqeuence Manager

Fixaj.propertiesFIXAJ Configuration Adaptor

Core

Handler Chain Manager

Message Handlers

Resend Request Handler

Client
API / JAX

RS

Aeron
Media

Driver /
UDP

Sequences FIX MessagesSession.properties

Figure 2 –Chronicle/Aeron solution overview

1. There are new cluster-based Storage Factory and Storage implementations on FIXAJ side.

2. Cluster-based Storage Factory and Storages create a configured instance of local persistence (available in

FIXAJ) and instance of Storage Service Client(s)

3. Cluster-based storage, in turn, creates a publisher (Aeron based) to stream all of the incoming/outbound

FIX messages in a Ring Buffer instance available through memory mapped file and Aeron media driver

a. Filter API (as part of Client API) implements filtering of FIX messages

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

4. Aeron’s Media Driver is responsible for sending FIX messages to FIX Storage Service(s) via configured FIX

Message Channel. It’s standalone instance, which handles all FIXAJ instances and FIX Session with

enabled cluster storage per host

5. FIX Storage Service(s) are subscribed to configured FIX Message Channel to listen FIX Messages (via

embedded Aeron’s Media Driver)

6. FIX Storage Service(s) uses Storage API (and corresponding implementation) to log all of the incoming

FIX message. Default implementation backed by Indexed Chronical Queue.

7. Chronicle log files organized per FIX Session at FIX Storage Service;

8. There are 3 possible type or records in log file:

a. FIX message

b. Filtered message indication

c. Unknown value (used to indicate a gap in sequence numbers caused by data unavailability)

9. REST Web service exposes the following methods/functions:

a. load/store FIX Session properties;

b. get incoming/outbound sequence numbers for a FIX Session

c. get a range of FIX Messages (for resend handling)

10. Requests for FIX Session state are sent to all configured FIX Storage Services. FIX Storage Service Client

API in context of cluster-based persistence will make a decision on data is valid and perform data

aggregations if necessary.

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

3.2 Logic overview in FIX Antenna Java Failover

3.2.1 REST API result aggregation in FIX Antenna Storage

Has next
FIX Storage Service?

Get ordered list of
FIX Storages

(with priorities)

Request and handle data
from FIX Storage Service

FIX Storage Service
has data?

No

Yes

Start

Abnormal end

End

Obtained required
data?

Yes

No

No

Yes

 In order to get required data from FIX Storage, cluster-based storage in FIXAJ starts from the first FIX
Storage Service in the configured list of FIX Storage Services (ordered by priority);

 If current instance of FIX Storage Service does not provide with expected data, then cluster-based
storage tries to get data from next FIX Storage Service in the configured list of FIX Storage Services (if
available);

 If all FIX Storage Services do not provide with required data, then FIXAJ storage tries to get data from
local file-bases storage (if configured);

 If all sources do not provide with required data, then it is exceptional case with has to be handles properly
according to FIX Session business logic;

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

3.2.2 FIX Storage Service states

Prev state Data

reset state on start? (yes by default)

No Data

Latest Data On incoming dataOn incoming data

Service will respond, and if
has high priority, then FIXAJ
will get this too old data

Service will not respond yet,
and FIXAJ will get latest
data from other FIX Storage
service in group

 saveSessionProps() updates Session Propeerties of the given FIX Session
 New IN/OUT FIX message put message and update sequence of the

given FIX Session;
 Backup(true) reset storage (and sequence) of the given FIX Session;

 Just started FIX Storage Service does not have any data (be default it backup previous data in FIX
Storages);

 If FIX Storage Service in “No data” state receives RS request for data from any FIXAJ instance, then it
does not provide response with expected data; FIXAJ will get the expected data from another FIX
Storage Service (according to priority);

 If FIX Storage Service received Session Properties of the given FIX Session at least once, then this FIX
Storage Service is ready to provide any FIXAJ with Session Properties of the given FIX Session;

 If FIX Storage Service received FIX Message of the given FIX Session at least once (or special replacement
of FIX Message), then this FIX Storage Service is ready to provide any FIXAJ Storage with sequence
number of the given FIX Session;

 If high priority FIX Storage Service does not provide the required range of FIX Messages, then cluster-
based storage will try to get the messages from other FIX Storage Service(s);

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

4 Non-Functional

Majority of design decisions made for Failover project are focused on making sure that overall FIXAJ performance
in distributed mode stays as close to local mode as only possible. We do not expect more than 20% performance
deviation from the baseline based on the most recent testing results.

4.1 Manageability

JMX can be implemented to expose current storage/session state. Should be design and implemented
according to a customer application framework.

Storage(s) administration is also possible with CRaSH (http://www.crashub.org/) based console. FAJ FO
commands are implemented to expose current storage/session state. Standard commands from the
CRaSH release can be used to expose current state of JVM instances;

4.2 Reliability

It’s recommended to have three storage nodes per data center running with one primary and two active
backups. Deployment in UBS environment will give more information on the current setup and number
of nodes might be adjusted.

4.3 FIX Antenna Java latency impact

Testing environment setup:

- Fix client (FIX AJ with Aeron based outgoing messages persistence) sending continues stream of
prepared messages

- Fix server (FIX AJ with original binaries) accepts all the incoming messages

- 3 seconds warmup, 5 iterations, 5 seconds measurement time

Baseline metrics a taken in similar test environment but FIX client uses unmodified FIXAJ binaries with
just local (file based) persistence.

Possible Aeron publisher impact to FIXAJ latency is (for avg message size 100 bytes):

 p(50,0000) = 1,810 us/op

 p(90,0000) = 1,812 us/op

 p(95,0000) = 2,112 us/op

 p(99,0000) = 4,224 us/op;

for avg message size 200 bytes):

 p(50,0000) = 2,112 us/op

 p(90,0000) = 2,112 us/op

 p(95,0000) = 2,716 us/op

 p(99,0000) = 7,544 us/op

http://www.crashub.org/

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

5 Configuration Notes

5.1 FIX Storage

-Dstorage.config.file=[DIR] – set configuration file path for FIX Storage Service. Configuration file can have all
properties (storage, communication) defined in CLI. Default configuration file path is storage.conf;

5.1.1 Storage:

 -Dstorage.keepPrevState=[bool] – move all previous created storage files to backup and start in clear state
(true) or continue with previous state (false);

 -Dstorage.path=[DIR] – set base folder for storage; default value: System.getProperty("java.io.tmpdir");

 -Dstorage.backup.path=[DIR] – set base folder path for backup data; default value:
System.getProperty("java.io.tmpdir") + File.separator + "backup";

5.1.2 Communication:

 -Dchannel.module=[name] – set multicast communication provider - AERON or FAST_CAST; default value
AERON;

 -Dchannel.multicast.addr=[ip:port] – set multicast channel address to subscribe to FIX Messages; default
value: 225.0.0.1:5000;

 -Dchannel.interface.addr=[ip] – set multicast interface to defined address; default value: 127.0.0.1;

 -Dhttp.port=[number] – set port for Storage RESTful API; Default value: 9999;

 -Dcrash.service.enabled=[bool] – start CRaSH service. By default, it is disabled;

5.2 FIX Antenna Java

 storageFactory – set storage factory; must be
com.epam.fixengine.failover.cluster.storage.MultiStorageFactory to enable failover features in FIXAJ;

 foPublisherAeronEmbeddedMediaDriver – set Aeron’s Media Driver mode; default value: true;

 foPublisherModule – set multicast communication provider - AERON or FAST_CAST; default value AERON;

 foStorageServiceUrl – set connection URL to FIX Storage RESTful API; default value:
http://localhost:9999/sessions;

 foPublisherMulticastAddr – set multicast address for FIX message publisher; default value:
aeron:udp?group=225.0.0.1:5000;

 foPublisherInterfaceAddr – set interface address for FIX message publisher; default value: 127.0.0.1;

 foStorageFactoryClassesList – set storages factory used by MultiStorageFactory -- default value: class=
com.epam.fixengine.failover.cluster.storage.FilesystemsStorageFactory,type=PRIMARY,serviceQueue=
true;class=com.epam.fixengine.failover.cluster.storage.ClusterStorageFactory;

FIX ANTENNA JAVA FAILOVER EXTENSION 1.0 – RELEASE NOTES

 foMessageFilterClass – set class name of FIX message filter implementation (implements
com.epam.fixengine.failover.cluster.storage.filter.FXFOMessageFilter); default value: "
com.epam.fixengine.failover.cluster.storage.filter.StandardFXFOMessageFilter";

 foMessageFilterTagsList – set tag list of FIX message types which should be filtered and not sent to FIX
storage. Expected in case of default filter implementation: "
com.epam.fixengine.failover.cluster.storage.filter.StandardFXFOMessageFilter";

