

QuickFIX to FIX Antenna™ C++

Migration Guide

Version 1.0.3.1 (2016-12-09)

QuickFIX to FIX Antenna™ C++ Migration Guide

2

Table of Contents
Overview ... 3

Performance Comparison ... 3

FA 2.5 results .. 3

FA 2.7 results .. 5

Migration Step-by-Step .. 7

Overview ... 7

1. Migration Package Installation ... 7

2. Updating Your Development Project .. 8

3. Converting QuickFIX configuration files ... 11

4. Converting customized QuickFIX protocol dictionaries for use with FIX Antenna C++ engine 14

Replacing standard FIX version dictionaries ... 14

Adding new custom FIX dictionaries .. 14

5. Converting customized QuickFIX protocol dictionaries for CPP code generator ... 16

6. Generating C++ business objects for standard or customized FIX protocol versions 16

7. Converting existing B2BITS FIX protocol customizations into QuickFIX C++ business objects 19

APPENDIX A. Configuration Reference ... 20

engine.properties File ... 20

qfa.adaptor.properties File ... 20

qfa.sessions File .. 22

Contact us ... 27

QuickFIX to FIX Antenna™ C++ Migration Guide

3

Overview
B2BITS provides FIXAntenna QF add-on package for FIX Antenna™ C++ library which helps to migrate from

QuickFIX to FIX Antenna™ C++. The package includes C++ classes which implement QuickFIX interface. The

migration to FIX Antenna™ engine essentially becomes a replacement of the library. The package also contains

tools that help dealing with QuickFIX FIX protocol definition in XML.

FIXAntenna QF Adaptor supports import of customized dictionaries from QuickFIX. This is done by using an XML

conversion tool which is part of the migration package (see Converting customized QuickFIX protocol dictionaries

).

The user migrating to FIX Antenna™ can leverage Certified FIX Connections to major exchanges and ECNs still

using QuickFIX business object model. This is achieved by using C++ code generator, which is part of the

migration package, that can convert B2BITS provided FIX custom protocol definitions into the typed C++ business

messages in QuickFIX style (see Generating C++ business objects for standard or customized FIX protocol

versions).

Supported QuickFIX features

 Typed C++ message objects and MessageCracker interface

 Transient and persistent FIX session storage

 FIX Session management (schedules)

 4.x and 5.x FIX protocol versions

 FIX protocol customizations

The following features are not part of the QF adaptor package. You may consider using the QuickFIX classes

instead

 No database persistence

 No built-in HTTP remote administration. Use a separate feature rich GUI tool for remote administration:

FIXICC

 The following configuration properties currently not supported: StartDay, EndDay (StartTime and

EndTime are supported).

 A number of low-level QuickFIX C++ interfaces related to message store or logging details are not

supported. The FIX Antenna™ engine library encapsulates its own optimized implementation of these

interfaces and hides such low-level details from the user.

Performance Comparison

This section describes performance scenarios and numbers obtained using PerformanceTest application that is

part of the migration package (please find the source code at: <path>\B2BITS\FIX Antenna

C++\v2.5.0.1\QFAdaptor\examples\PerformanceTest). The application code is written using QuickFIX interface,

the same source code is used when running the test with QuickFIX and FIX Antenna™ library.

FA 2.5 results
Latency Test

http://www.b2bits.com/trading_solutions/fix_engine_cpp.html
http://www.b2bits.com/consulting/hosting.html
http://www.b2bits.com/trading_solutions/fixicc.aspx

QuickFIX to FIX Antenna™ C++ Migration Guide

4

The test application establishes a FIX session on a local host using an instance of

ThreadedSocketAcceptor/Initiator class. A FIX message (NewOrderSignle) is repeatedly sent within the session.

The time of the FIX message travelling from the sending endpoint to the receiving endpoint is measured and

reported. This is the time which is spent between Session::send() call and MessageCracker::onMessage().

FIX session uses persistent disk message store.

 CPU: AMD Phenom II X4 3.0 GHz

Average message latency with FIX Antenna™: 38 mcs (min: 34, max: 276)

Average message latency with QuickFIX: 146 mcs (min: 141, max: 14528)

Conclusion: The message delivery time with FIX Antenna™ QF Adaptor is 3.7 times less than that of the QuickFIX

library.

Throughput Test

The test application establishes FIX sessions on a local host using an instance of SocketAcceptor/Initiator class. A

FIX message (NewOrderSignle) is repeatedly sent into each of the created sessions. The test ends once all of the

1,000,000 messages are delivered to the receiving endpoint. The test calculates the throughput that is the

number of messages delivered per 1 second.

38

141

0

20

40

60

80

100

120

140

160

FIX Antenna QuickFIX

M
e

ss
ag

e
 L

at
e

n
cy

, m
cs

Message Send/Receive
Latency

QuickFIX to FIX Antenna™ C++ Migration Guide

5

Conclusion: The message throughput of FIX Antenna™ with QF adaptor is over 7 times more than that of the

QuickFIX using the single instance of SocketAcceptor/Initiator class that hosts the sessions. With FIX Antenna™

you don’t need to decide how many of the SocketAcceptor instances to launch in order to load your CPU cores

with enough work. The scalability is achieved automatically regardless how the session grouping within particular

acceptor/initiator instances.

FA 2.7 results
HP ProLiant DL 360, 2.8GHz, 2 CPU, 12 cores, x64, 16Gb RAM

Linux: Fedora 14 x64

B2BITS QF Adaptor results:

NullMessageStore, ThreadedSocketsInitiator/Acceptor, SocketNodelay=Y

--- Message latency ---

Count: 100000

Min: 15 uSec

Max: 207 uSec

Avg: 20 uSec

Throughput

1 Session

NullMessageStore, SocketsInitiator/Acceptor, SocketNodelay=N

Messages sent: 1000000

Concurrent FIX sessions: 1

76489

10535

42433

10591

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

FIX Antenna QuickFIX

N
u

m
b

e
r

o
f

M
e

ss
ag

e
s/

se
co

n
d

Message Throughput

1 FIX session

10 FIX sessions

QuickFIX to FIX Antenna™ C++ Migration Guide

6

Throughput: 394802 messages/sec.

10 Sessions

Messages sent: 1000000

Concurrent FIX sessions: 10

Total Throughput: 375713 messages/sec.

Avg Throughput per session: 37571 messages/sec.

QuickFIX to FIX Antenna™ C++ Migration Guide

7

Migration Step-by-Step

Overview

Typically in order to migrate you need to do the following steps:

1. Install FIX Antenna™

2. Install FIX Antenna™ QF adaptor

3. Update your project to include QF adaptor source files and add a QF adaptor initialization call

4. Convert QuickFIX configuration files into FIX Antenna™ format

5. Compile and run

If you used custom FIX dictionaries:

6. Convert the dictionaries into FIXDIC format

7. An optional extra step: generate C++ business objects for custom FIX protocol

1. Migration Package Installation

Pre-requisites

In order to use the tools included with the package, ensure the following is installed:

1. Perl version 5.6 or later. Under Windows we recommend to use the ActivePerl distribution. In order to

check that Perl is available, use the following command line:

 perl –version

2. Java 1.5 or higher. In order to check that java is available, use the following command line:

 java –version

Note: for Linux the Sun Java or OpenJDK packages are recommended. The “gij (GNU libgcj) 1.4 ” was

found to show significantly slower performance with the XML conversion tool.

Microsoft Visual Studio™ and GNU C++ compilers are supported. The version of the compiler should be the same

as used by your FIX Antenna™ C++ package.

Installation

1. Install FIX Antenna™ C++ package. For information on how to get it please refer to the web site.

2. Unpack and place the “QFAdaptor” folder with FIX Antenna™ QF adaptor into the FIX Antenna™

installation at "<path>\B2BITS\FIX Antenna C++\v2.5.0.1". The version number may be different.

In the FIX Antenna™ QF Adaptor package all the C++ classes are enveloped in “QFA::” namespace. Additional

define overrides “FIX” namespace definition and substitutes it with “QFA”.

To check that everything works OK, you may compile and run the example application found at

"<path>\B2BITS\FIX Antenna C++\v2.5.0.1\QFAdaptor\examples\PerformanceTest\”. There is already an EXE

binary in the “bin” folder built for Windows 32bit platform (using Microsoft Visual Studio® 2008), and you can run

the performance test on Windows 32bit. For other platforms, please follow the instructions below:

Sample Project - Windows

1. Open PerformanceTest_vs2008.sln in Microsoft Visual Studio 2008

http://www.activestate.com/activeperl/downloads
http://www.b2bits.com/trading_solutions/fix_engine_cpp.html

QuickFIX to FIX Antenna™ C++ Migration Guide

8

2. Build the solution

3. Go to PerformanceTest\bin\config and run config_convert_1session.cmd and

config_convert_10session.cmd command files. These commands convert 1session.cfg and 10sessions.cfg

configuration files from QuickFIX to FIXAntenna™ format. Output files are placed in the folder

“converted”

4. Go to “bin” folder and run run_latency_test.bat, run_throughput_1session.bat,

run_throughput_10sessions.bat.

Sample Project - Linux

1. Go to PerformanceTest folder and run ‘make’

2. Go to PerformanceTest\bin\config and run config_convert_1session.sh and config_convert_10session.sh

command files. These commands convert 1session.cfg and 10sessions.cfg configuration files from

QuickFIX to FIXAntenna™ format. Output files are placed in the folder “converted”

3. Go to “bin” folder and run run_latency_test.sh, run_throughput_1session.sh,

run_throughput_10sessions.sh

2. Updating Your Development Project

This chapter provides step-by-step instructions for changing a project that used QuickFIX C++ library and was

created in Microsoft Visual Studio 2008. Similar steps will be necessary in case of other IDEs or platforms (for

example, updating the project’s makefile on Linux).

1. Follow the general FIX Antenna™ installation instructions

2. Remove the references to QuickFIX include and library folders from your project

3. Add the "<path>\B2BITS\FIX Antenna C++\v2.5.0.1\QFAdaptor\include” and "<path>\B2BITS\FIX

Antenna C++\v2.5.0.1\headers” to your project’s include paths

http://corp-web.b2bits.com/fixacpp/doc/html/page3.html#sec3_2

QuickFIX to FIX Antenna™ C++ Migration Guide

9

4. Add new library path to the project: "<path>\B2BITS\FIX Antenna C++\v2.5.0.1\lib”

5. Add the all_cpp.cpp file that is located in folder "<path>\B2BITS\FIX Antenna

C++\v2.5.0.1\QFAdaptor\include\qfa\cpp\all_cpp.cpp” to your project so that they are compiled together

with the rest of your project files.

QuickFIX to FIX Antenna™ C++ Migration Guide

10

6. Link the project with one of the FIX Antenna™ libs in the lib folder depending on release/debug

configuration

QuickFIX to FIX Antenna™ C++ Migration Guide

11

You may refer to the sample project that is under "<path>\B2BITS\FIX Antenna

C++\v2.5.0.1\QFAdaptor\examples\PerformanceTest\” to see how a project may be set up.

7. Insert a call to initialize QF adaptor and the instance of FIX Antenna™ library used by this adaptor before

making further calls to it:

QFA::InitializeEngineAdaptor("<path>/qfa.adaptor.properties",

"<path>/engine.properties");

See the next chapter for the details on producing the .properties files.

8. In the end of the program, insert a call to shut down the adaptor and the instance of FIX Antenna™

library:

QFA::ShutdownEngineAdaptor();

3. Converting QuickFIX configuration files

The QuickFIX session configuration files are converted into B2BITS format using the "<path>\B2BITS\FIX Antenna

C++\v2.5.0.1\QFAdaptor\tools\migrate_config\qfa_migrate_config.pl” script. In order to use this script, Perl

interpreter version 5.6 or later has to be available. Under Windows we recommend to use the ActivePerl

distribution.

In order to check the presence and version of Perl, use the following command line:

http://www.activestate.com/activeperl/downloads

QuickFIX to FIX Antenna™ C++ Migration Guide

12

 perl --version

The migration tool consists of the following files:

 qfa_migrate_config.pl – Perl scripts

 engine.properties.template, qfa.adaptor.properties.template – Template files that are used to

produce appropriate output files.

Tool invocation

To convert a QuickFIX .CFG file go to the folder where it resides and invoke the following command:

<path>\QFAdaptor\tools\migrate_config\qfa_migrate_config.pl <command like parameters>

Refer to the “example_conversion.cmd” file in the migrate_config folder to see how the command is used.

Below are the qfa_migrate_config.pl command line parameters:

Usage: qfa_migrate_config.pl <QuickFIX config file> <Engine RootDir setting> [Output

directory]

Mandatory parameters:

 "QuickFIX config file" Source file to be converted

 "RootDir setting" Path to the fix engine root directory

 where the message store and log files will reside

Optional parameters:

 "Output directory" Where to put the generated configuration files.

 If omitted, a new folder in current directory will be

created.

The script parses QuickFIX configuration file, maps the QuickFIX settings to the FIX Antenna™ settings and creates

the output file. Notice the ERRORs or WARNINGs messages that may be generated by the conversion script when

it fails to produce proper mapping and try to correct the cause.

The conversion script will create the following three files1:

 engine.properties – FIX Antenna™ engine global settings. The path to this file is then passed to the

QFA::InitializeEngineAdaptor() call.

 qfa.adaptor.properties – The settings used specifically by the adaptor classes that provide QuickFIX

interface for the user application. The path to this file is passed to the QFA::InitializeEngineAdaptor() call.

1 The produced files can also be used by FIXEdge server as well without much change in the format. The leading “QFA.” in the

property names have to be replaced with appropriate FIXEdge prefix (refer to this FIXEdge guide).

http://corp-web.b2bits.com/fixacpp/doc/html/page15.html#sec15_1
http://www.b2bits.com/docs/FIXEdge_Quick_Start_Guide_2.pdf

QuickFIX to FIX Antenna™ C++ Migration Guide

13

 example.qfa.sessions2 – This is the FIX session definition file. There can be multiple files of such kind used

by an application. The path to the file is passed to an instance of FIX::SessionSettings class.

Note that two of the files, engine.properties and qfa.adaptor.properties, are used globally and are to be passed to

the adaptor initialization call. There can be multiple *.qfa.sessions files used by your program and each

conversion would produce the engine.properties and qfa.adaptor.properties files. If this is the case, review the

produced engine.properties and qfa.adaptor.properties files (compare the file content) and chose the files for

the QFA::InitializeEngineAdaptor() call.

IMPORTANT: The following properties of the global engine.properties file are updated by the migration script and

are shared between all FIX connections:

 ListenPort – this is the setting copied from SocketAcceptorPort of the QuickFIX configuration file

 EngineRoot – the path used to resolved the log and message store relative paths

 Log.File.RootDir – the path to the additional log folder (set to be <EngineRoot>/logs)

 LogonTimeFrame, LogoutTimeFrame, AllowEmptyFieldValue, MessageMustBeValidated

 standard FIX XML files listed in DictionariesFilesList of engine.properties file

 The following properties of the global qfa.adaptor.properties file are updated by the migration script and are

shared between all FIX connections:

 Log.File.RootDir – the path to the folder where the QF adaptor stores its own logs (set to be

<EngineRoot>/logs)

The following properties in qfa.adaptor.properties are to be set up by the user if necessary:

 new FIX dictionaries (besides standard ones in engine.properties) are listed in

QFA.CustomVersion.<name> properties of qfa.adaptor.properties file

Backup FIX Connection

If the QuickFIX’ configuration file specifies SocketConnectHost1/ SocketConnectPort1 pair, this is converted to the

Backup connection properties of the FIX Antenna™ thus enabling to switch to this connection if the primary

connection breaks.

Setting Session Properties on Run-time

This is an example of how to set up session properties programmatically:

void initExtraLowLatencyParams(FIX::Session& session)

{

 session.setSessionProperty("TcpBufferDisabled", "true");

 session.setSessionProperty("StorageType", "null");

 session.setSessionProperty("SocketPriority", "AGGRESSIVE_SEND_AND_RECEIVE");

 session.setSessionProperty("AggressiveReceiveDelay", "0");

 session.setSessionProperty("ValidateCheckSum", "false");

 session.setSessionProperty("GenerateCheckSum", "false");

}

void initSessionsLowLatency(const std::set<FIX::SessionID>& sessions)

2 Note that Start/TerminateTimeUTC parameters are currently not supported by FIXEdge, use the parameters that specify a
local time instead - Start/TerminateTime

QuickFIX to FIX Antenna™ C++ Migration Guide

14

{

 for(std::set<FIX::SessionID>::const_iterator it = sessions.begin();

 it != sessions.end();

 ++it)

 {

 FIX::Session* session = FIX::Session::lookupSession(*it);

 initExtraLowLatencyParams(*session);

 }

}

Main program:

{

………

 FIX::SessionSettings settings(file);

 Application application(true);

 FIX::NullStoreFactory storeFactory;

 FIX::ThreadedSocketAcceptor acceptor(application, storeFactory, settings);

 FIX::ThreadedSocketInitiator initiator(application, storeFactory, settings);

 initSessionsLowLatency(FIX::Session::getSessions());

……

}

Log files to be watched on run-time

After starting the engine, the following log files will be created:

 <EngineRoot>/logs/qfa_engine_<digits>.log – the FIX Antenna™ engine log

 <EngineRoot>/logs/qfa_engine_adaptor.log – the QF adaptor log

 <EngineRoot>/logs/SENDER-TARGET_<digits>.conf – this file will contain the list of actual FIX Antenna™

session settings used when creating particular FIX session identified by <SENDER, TARGET>

4. Converting customized QuickFIX protocol dictionaries for use with FIX Antenna C++ engine

If your project uses customized FIX protocol definitions, you may convert them into FIXDIC format by using the

utility “<path>\QFAdaptor\tools\xml_dict_conversion\dict_convert.cmd”.

Replacing standard FIX version dictionaries

After conversion, you can replace the old dictionary with a new one in DictionariesFilesList the engine.properties.

Example: DictionariesFilesList =

../../../dict/b2bits/quickfix/fixdic40.xml;../../../dict/b2bits/quickfix/fixdic41.xml;../../../dict/b2bits/quickfix/myfix

dic42.xml;../../../dict/b2bits/quickfix/fixdic43.xml;../../../dict/b2bits/quickfix/fixdic44.xml;../../../dict/b2bits/quick

fix/fixdic50.xml;../../../dict/b2bits/quickfix/fixdic50sp1.xml;../../../dict/b2bits/quickfix/myfixdic50sp2.xml;../../..

/dict/b2bits/quickfix/myfixdict11.xml

Note that by replacing the standard FIXT11 dictionary all other FIX50 protocol versions are getting affected.

“FIX42 “ and “FIX50SP2“ are the FIX version identifiers that can be passed in string format to API functions that

accept “const char* customFIXVersion” parameters, such as FIX::DataDictionary, FIX::Message, etc.

Besides that, the Engine::FIXVersion enumeration can be used to pass numeric constants like FIX42, FIX50SP2 to

functions that accept Engine::FIXVersion parameter type.

Adding new custom FIX dictionaries

To add a custom dictionary, edit the XML file and change id attribute:

QuickFIX to FIX Antenna™ C++ Migration Guide

15

<fixdic xmlns="http://www.b2bits.com/FIXProtocol" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://www.b2bits.com/FIXProtocol fixdic.xsd"

 id="FIX42NSDQ" fixversion="4.2" title="FIX 4.2 (with errata 20010501)"

version="1.5.10" date="2011-11-04">

In case of FIX50 dictionary, also provide custom FIXT11 dictionary with a unique id.

Then edit the qfa.adaptor.properties file:

For FIX4.x based protocols use: QFA.CustomVersion.<MyName> = <dictionary file>

For FIX5.0 based protocols use: QFA.CustomVersion.<MyName> = <app dictionary

file>:<transport dictionary file>

Note that <transport dictionary file>'s should have unique <fixdic id=<value> inside.

Examples:

QFA.CustomVersion.FIX42NSDQ = ../../../dict/fixdic/fixdic42_nsdq.xml

QFA.CustomVersion.FIX50SP2JSE =

../../../dict/fixdic/fixdic50sp2jse.xml:../../../dict/fixdic/fixdict11jse.xml

“FIX42NSDQ “ and “FIX50SP2JSE“ are the new FIX version identifiers that can be passed in string format to API

functions that accept “const char* customFIXVersion” parameters, such as FIX::DataDictionary, FIX::Message, etc.

XML additional fields file that provides protocol customization

QFA.CustomVersion.FIXcustom.AdditionalFieldsFileName = <path>/ customdict44_engine.xml

Creating Messages in C++ using customized FIX dictionaries

The following are examples of how to create messages using custom dictionaries. The syntax is sometimes

different compared to the original QuickFIX.

Example 1. Creating a ExecutionReport message using the session’s FIX dictionary. Depending on what was

configured for this session it might be a custom dictionary.

 FIX::Session* session = FIX::Session::lookupSession(sessionID);

 FIX::Message msg(*session, QFA::MsgType_ExecutionReport);

Example 2. Creating a ExecutionReport message using the FIXcustom dictionary configured in

qfa.adaptor.properties file.

 FIX::Message msg(“FIXcustomVersion”, QFA::MsgType_ExecutionReport);

 FIX50::Message msg(“FIX50SP2JSE”, QFA::MsgType_ExecutionReport);

Example 3. Creating a ExecutionReport message using the FIXcustom dictionary configured in

qfa.adaptor.properties file and C++ classes generated for this dictionary. See the following chapters for more info:

Generate Message Classes bound to Custom FIX Protocols and New C++ namespace for custom FIX protocols

QuickFIX to FIX Antenna™ C++ Migration Guide

16

 FIXcustom::Message msg(QFA::MsgType_ExecutionReport);

 FIXcustom::ExecutionReport msg(…);

 FIX42::ExecutionReport msg(…);

Example 4. Using DataDictionary class:

DataDictionary dataDictionary("FIX43");

DataDictionary dataDictionary("..\FIX43.xml"); // ----- FIX43 substring is identified in

the file name, and used to map to QFA FIX version identifiers. The file itself is ignored.

message.setString(str, true, &dataDictionary);

5. Converting customized QuickFIX protocol dictionaries for CPP code generator

Use the utility “<path>\QFAdaptor\tools\xml_dict_conversion\dict_convert_for_cpp.cmd” to convert QuickFIX

XML definition into XML format suitable for further use with CPP code generator tool. This .CMD file is an

example how to invoke the conversion tool.

6. Generating C++ business objects for standard or customized FIX protocol versions

Note: the CppGenerator.exe application is a Windows executable. When using the Linux version of the QF

adaptor package, please unpack it on Windows and run the tool there.

Alternative 1. QuickFIX dictionary XML to CPP conversion

This method is the recommended way for generating CPP classes, it uses QuickFIX dictionaries as the source.

1. Go to <path>\QFAdaptor\tools\cpp_code_generator\quickfix-dict folder

2. Copy FIX40.xml, FIX41.xml, FIX42.xml, FIX43.xml, FIX44.xml, FIX50.xml, FIX50SP1.xml, FIX50SP2.xml,

FIXT11.xml from quickfix/spec folder of your QuickFIX/C++ distribution to quickfix-input folder.

3. Add any custom dictionary files you would like to convert to the quickfix-input folder

4. Edit the quickfix-to-qfa-to-cpp.cmd file if any custom XMLs are used. Typically you would replace one of

the existing FIXnn files with a custom one. Please refer to the following chapter if you would like to keep

the base FIXnn version untouched and see your custom FIX protocol as a separate version of FIX protocol

with new C++ message classes for business messages: Generate Message Classes bound to Custom FIX

Protocols

When custom FIX protocol XML dictionaries are used, it may be desired to generate CPP message classes that will

support the custom fields and groups defined in that dictionary. Then it will be possible to access these fields

using get/set methods, for example, message.get(FIX42::MyNewField).

In contrast to standard FIX 4.x and 5.x protocols, the custom protocols are loaded from XML and registered in the

FIX Antenna engine and QFA adaptor. The message classes need also to know how to find the custom dictionary

when the message object is created.

The custom FIX protocols are defined in qfa.adaptor.properties file in QFA.CustomVersion… properties. Refer to

the chapter for more info: 4. Converting customized QuickFIX protocol dictionaries for use with FIX Antenna C++

engine. The custom protocol is identified by an ID, which is a string, e.g. “CustomFIX44”.

QuickFIX to FIX Antenna™ C++ Migration Guide

17

In order to pass this information to the CPP code generator, the “customFIXVer” attribute should be specified for

the XML dictionary file that is passed to the tool in <path>\QFAdaptor\tools\cpp_code_generator\quickfix-to-qfa-

to-cpp.cmd:

fixdic-input\fixdic44.xml@customFIXVer=MY_Custom_FIX44@param2=….

where MY_Custom_FIX44 is the name of the custom protocol defined in qfa.adaptor.properties file.

5. New C++ namespace for custom FIX protocol

6. Run quickfix-to-qfa-to-cpp.cmd command (on Linux use the .sh script)

7. Copy the contents of generated “qfa” folder to <path>\QFAdaptor\include\qfa. This will overwrite

existing files in this folder.

Alternative 2. FIX Antenna XML to CPP conversion

This method is recommended in the case when one wants to generate the C++ classes for business messages

directly out of the FIX Antenna FIXDIC XML dictionaries rather than out of the QuickFIX dictionaries.

The business message C++ classes can be generated from FIX Antenna ™ dictionaries using the

<path>\QFAdaptor\tools\cpp_code_generator\qfa-generate.cmd utility (or .sh script on Linux). This command file

can be further modified by the user who wants to produce the classes for customized FIX protocols. For example,

consider changing the following command line in this .cmd file:

bin\CodeGenerator.exe fixdic-input\fixdic40.xml fixdic-input\fixdic41.xml fixdic-

input\fixdic42.xml fixdic-input\fixdic43.xml fixdic-input\fixdic44.xml fixdic-

input\fixdic50.xml fixdic-input\fixdic50sp1.xml fixdic-input\fixdic50sp2.xml fixdic-

input\fixdict11.xmland replace the text in bold (fixdic-input\fixdic44.xml) with a path to a custom FIX

protocol definition. Such a definition can be produced from QuickFIX XML, refer to this chapter for the

instructions: Converting customized QuickFIX protocol dictionaries for CPP code generator.

Note that the XMLs for all the FIX versions should be passed to this utility for processing at once (i.e. all files to be

passed in the single command line, the code generator is not to be invoked for one individual file) because the

code generator has to collect the definitions from all versions of the files to create consolidated lists in output

files. This includes definitions for FIX tag numbers, message field values, etc.

After running the command, the “qfa” folder with the .H files is created. Copy the contents to the qfa folder

located at: <path>\QFAdaptor\include\qfa

Generate Message Classes bound to Custom FIX Protocols

When custom FIX protocol XML dictionaries are used, it may be desired to generate CPP message classes that will

support the custom fields and groups defined in that dictionary. Then it will be possible to access these fields

using get/set methods, for example, message.get(FIX42::MyNewField).

In contrast to standard FIX 4.x and 5.x protocols, the custom protocols are loaded from XML and registered in the

FIX Antenna engine and QFA adaptor. The message classes need also to know how to find the custom dictionary

when the message object is created.

The custom FIX protocols are defined in qfa.adaptor.properties file in QFA.CustomVersion… properties. Refer to

the chapter for more info: 4. Converting customized QuickFIX protocol dictionaries for use with FIX Antenna C++

engine. The custom protocol is identified by an ID, which is a string, e.g. “CustomFIX44”.

QuickFIX to FIX Antenna™ C++ Migration Guide

18

In order to pass this information to the CPP code generator, the “customFIXVer” attribute should be specified for

the XML dictionary file that is passed to the tool in <path>\QFAdaptor\tools\cpp_code_generator\quickfix-to-qfa-

to-cpp.cmd:

fixdic-input\fixdic44.xml@customFIXVer=MY_Custom_FIX44@param2=….

where MY_Custom_FIX44 is the name of the custom protocol defined in qfa.adaptor.properties file.

New C++ namespace for custom FIX protocols

By default, the business message C++ classes are created in FIXnn namespace which corresponds to the FIX base

protocol version taken from the XML. If you’d like to place your customized protocol classes into a separate

distinct namespace, pass the XML file to bin\CodeGenerator.exe command as follows: fixdic-
input\fixdic44.xml@namespace=MY_Custom_FIX44@param2=….

As long as the MessageCracker class cannot distinguish between the base FIX version and your custom version

since the BeginString field of the message will contain the base FIX version number, you would have to do the

message class conversion on your own, for example, consider modifying

<path>\QFAdaptor\include\qfa\MessageCracker.h like follows:

#include <qfa/my_custom_fix44/MessageCracker.h> // add this include

class MessageCracker :

 public FIX40::MessageCracker,

 public FIX41::MessageCracker,

 public FIX42::MessageCracker,

 public FIX43::MessageCracker,

 public FIX44::MessageCracker,

 public FIX50::MessageCracker,

 public FIX50SP1::MessageCracker,

 public FIX50SP2::MessageCracker,

 public FIXT11::MessageCracker,

 public MY_Custom_FIX44::MessageCracker // add new class inheritance

{

public:

 virtual void crack(const Message& message, const SessionID& sessID)

 {

 Engine::FIXVersion ver = message.getMsgVer();

 switch(ver)

 {

 case Engine::FIX40:

 return static_cast<FIX40::MessageCracker*>(this)->

 crack(static_cast<const FIX40::Message&>(message), sessID);

 case Engine::FIX41:

 return static_cast<FIX41::MessageCracker*>(this)->

 crack(static_cast<const FIX41::Message&>(message), sessID);

 case Engine::FIX42:

 return static_cast<FIX42::MessageCracker*>(this)->

 crack(static_cast<const FIX42::Message&>(message), sessID);

 case Engine::FIX43:

 return static_cast<FIX43::MessageCracker*>(this)->

 crack(static_cast<const FIX43::Message&>(message), sessID);

 case Engine::FIX44:

 if(sessID.sessionQualifier_ == <My_custom_FIX44_initiator>" ||

 sessID.senderCompID_ == "<Specific sender>") // or put any other appropriate

condition here...

 return static_cast< MY_Custom_FIX44::MessageCracker*>(this)->

 crack(static_cast<const MY_Custom_FIX44::Message&>(message),

sessID);
 else

 return static_cast<FIX44::MessageCracker*>(this)->

 crack(static_cast<const FIX44::Message&>(message), sessID);

 case Engine::FIX50:

 return static_cast<FIX50::MessageCracker*>(this)->

QuickFIX to FIX Antenna™ C++ Migration Guide

19

 crack(static_cast<const FIX50::Message&>(message), sessID);

 case Engine::FIX50SP1:

 return static_cast<FIX50SP1::MessageCracker*>(this)->

 crack(static_cast<const FIX50SP1::Message&>(message), sessID);

 case Engine::FIX50SP2:

 return static_cast<FIX50SP2::MessageCracker*>(this)->

 crack(static_cast<const FIX50SP2::Message&>(message), sessID);

 case Engine::FIXT11:

 return static_cast<FIXT11::MessageCracker*>(this)->

 crack(static_cast<const FIXT11::Message&>(message), sessID);

 }

 }

7. Converting existing B2BITS FIX protocol customizations into QuickFIX C++ business objects

B2BITS can provide you with FIX protocol customizations used to connect to various destinations. Let’s consider

MICEX exchange as an example. There will be the micex_fix.xml file which defines additional fields used in some

FIX messages. This file is to be mentioned in QFA.CustomVersions property of qfa.adaptor.properties file.

 In order to obtain the C++ classes for customized business messages follow these steps:

1. Merge the micex_fix.xml customization with the base protocol, for example FIX44. Use the

<path>\QFAdaptor\tools\xml_dict_conversion\dict_merge.cmd command line to do the merging.

2. Take the merged XML file and follow the instructions specified in chapter Generating C++ business objects

for standard or customized FIX protocol versions

QuickFIX to FIX Antenna™ C++ Migration Guide

20

APPENDIX A. Configuration Reference

engine.properties File
Also refer to the latest version of documentation on the B2BITS web site: engine.properties or documentation in

your FIX Antenna™ distribution: <path>\B2Bits\FIX Antenna C++\v2.3.12.17\doc\index.html

qfa.adaptor.properties File3

Property Default Value Description

QFA.CustomVersion.<Custom FIX ID>.<Name> =

<App dict XML>:<Transport Dict XML>

 Denotes a custom FIX protocol

 Log.File.RootDir

 Log.Device File Console Target devices

 Log.DebugIsOn false Turns on/off logging on the

debug level

 Log.NoteIsOn true Turns on/off logging on the

notice level

 Log.WarnIsOn true Turns on/off logging on the

warning level

 Log.ErrorIsOn true Turns on/off logging on the

error level

 Log.FatalIsOn true Turns on/off logging on the fatal

level

 Log.Cycling false Turns cycling on/off.

 Log.Cycling.Ignore 3 Number of repeating records to

be placed to log before cycling

is started.

 Log.Cycling.BlockSize 10 Number of repeating records to

be accumulated (hidden) before

writing the "cycle record" to the

log.

 Log.Cycling.Multiplier 10 Multiplier for the Block Size.

If BlockSize number of

messages is accumulated and

the same message still appears

then next BlockSize is

calculated as the previous one

multiplied by Multiplier.

 Log.File.Name File name. If more than one

category uses files with the

same name the same file will be

used simultaneously.

 Log.File.Recreate false If true then file will be recreated

on each start. If false then new

records will be appended to the

3 The corresponding FIXEdge parameters are described in this guide

http://corp-web.b2bits.com/fixacpp/doc/html/page15.html#sec15_1
http://www.b2bits.com/docs/FIXEdge_Quick_Start_Guide_2.pdf

QuickFIX to FIX Antenna™ C++ Migration Guide

21

current file.

 Log.File.AutoFlush true If set to true then the buffer is

flushed after each logging call.

If set to false then flush is not

called. Setting to true decreases

program performance; setting to

false increases a risk of record

loss in the event of program

failure.

QuickFIX to FIX Antenna™ C++ Migration Guide

22

qfa.sessions File4

Property Default

Value

Description

 QFA.Sessions This parameter determines the names of

FIX session-acceptors. For each such a

session it is necessary to define the

parameters described below.

The format is 'session.X.ParameterName'

where 'X' is the name of session.

 QFA.Session.<Name>.Version FIX protocol version. Allowed values are

FIX40, FIX41, FIX42, FIX43, FIX44,

FIX50, FIX50SP1, FIX50SP2 or custom

protocol names as specified in

qfa.adaptor.properties file

 QFA.Session.<Name>.Role Initiator/Acceptor

 QFA.Session.<Name>.Username Username for FIX Session authentication

 QFA.Session.<Name>.Password Password for FIX Session authentication

 QFA.Session.<Name>.SenderCompID SenderCompID (Assigned value is used to

identify a firm sending message).

 QFA.Session.<Name>.TargetCompID TargetCompID (Assigned value is used to

identify a receiving firm).

 QFA.Session.<Name>.Host Network address of the computer, to which

connection is established.

 QFA.Session.<Name>.Port Port's network number on the computer, to

which connection is established.

 QFA.Session.<Name>.HBI 60 Time interval (in seconds) between

Heartbeat messages. The recommended

value is 10 seconds for dedicated

connections or private networks. Trading

connections via the internet will require

calibration. '0' means that no Heartbeat

messages will be sent.

 QFA.Session.<Name>.InSeqNum 0 The initial incoming sequence number.

The first incoming message is expected to

have the specified sequence number. The

default value will be used when set to zero.

QFA.Session.<Name>.IntradayLogoutTolerance false An option not to reset sequence numbers

after a Logout.

The party sending a Logout should initiate

session recovery by sending a Logon

message with SeqNum = + 1; expecting

reply Logon withSeqNum = + 1. If a gap is

detected, standard message recovery or

gap filling processes arise.

This property overrides the

'IntradayLogoutTolerance' property in

4 Note that this configuration file uses a syntax which is close to that of the FIXEdge product. This is helpful when someone
wants to migrate from QuickFIX to FIXEdge. The corresponding FIXEdge parameters are described in "FIX Edge -
AdminGuide.html" available in the FIXEdge product installation.

http://www.b2bits.com/trading_solutions/fixedge.html

QuickFIX to FIX Antenna™ C++ Migration Guide

23

'engine.properties' for this session.

Note : The default value is taken

from engine.properties

 QFA.Session.<Name>.OutSeqNum 0 The initial outgoing sequence number. The

first outgoing message will be sent with

the specified sequence number. If '0' then

the default value is used.

 QFA.Session.<Name>RejectMessageWhileNoCo

nnection

false When true, application messages will be

rejected, when session unable to send them

during specified period or after being

disconnected.

 QFA.Session.<Name>.Description Session's description.

 QFA.Session.<Name>.StartTime Local time to start the session (HH:MM).

If the start-up time is greater than the

specified value then the session will be

started immediately. Note: this property is

optional.

 QFA.Session.<Name>.TerminateTime Local time to terminate this session

(HH:MM). If the start-up time is greater

than the specified value then the value will

take effect. Note: this property is optional.

QFA.Session.<Name>.StartTimeUTC Start time in UTC

QFA.Session.<Name>.TerminateTimeUTC Terminate time in UTC

QFA.Session.<Name>.SourceIPaddress localhost The expected value of the source IP

address. If the real value is not equal to the

expected one then the session is

disconnected without sending a message

and an error condition is generated in the

log output.

QFA.Session.<Name>.RecreateOnLogon Initiator: true

Acceptor:

false

If set to true and an attempt to connect

fails, QFA adaptor will continue to ask the

FIX Engine to establish the connection

until it is successfully done.

QFA.Session.<Name>.RecreateOnLogout Initiator:

false

Acceptor:

true

If set to false then session is removed from

the list of sessions after successful

disconnection. If set to true then it will be

recreated after disconnection.

Note : recreation will take place only if

disconnection is initialized by the counter-

party.

QFA.Session.<Name>.ReconnectInterval 30 Time interval at which the

ReconnectOnLogon/Logout attempts will

be made for session initiators. For

acceptors it is always set to 0 meaning to

repeat immediately. So for example an

acceptor with RecreateOnLogout=true is

reacreated and is ready for a new

connection right after the logout.

QFA.Session.<Name>.ForceReconnect true Extends the session connection retry

mechanism in the FIX Engine to the logon

attempts. The engine will try to establish a

connection if the remote endpoint is not

QuickFIX to FIX Antenna™ C++ Migration Guide

24

available. Without this settings, the engine

reconnects only when an already

established session breaks. The number of

retry attempts is specified in the

Reconnect.MaxTries setting of the

engine.property file. The time interval is

set by the Reconnect.Interval property in

the same file.

With this setting enabled, the connection

may switch to backup connection at the

logon time, if the primary endpoint is not

available.

QFA.Session.<Name>. SenderLocationID FIX tag 142 - assigned value used to

identify specific message originator's

location (i.e. geographic location and/or

desk, trader).

QFA.Session.<Name>. TargetLocationID FIX tag 143

QFA.Session.<Name>. ForceSeqNumReset 0 This parameter allow to automatically

resolve sequence gap problem. When

mode is ON session uses

141(ResetSeqNumFlag) tag in

sending/confirming Logon message to

reset SeqNum at the initiator or acceptor.

"0" - Disable ForceSeqNumReset mode

"1" - Enable SeqNum reset at first time of

session initiation

"2" - Enable SeqNum reset for every

session initiation

QFA.Session.<Name>.
ResetSeqNumAtScheduledStartTime

false Perform FIX session sequence numbers at

the scheduled session’s start time (do so

when the session happens to be still alive

at the scheduled time)

QFA.Session.<Name>. IntradayLogoutTolerance true If true, don’t reset sequence numbers on

logout

QFA.Session.<Name>. KeepConnectionState false When true, primary to backup (and back)

connection switching continue using

existing message storage

QFA.Session.<Name>. SocketPriority EVEN EVEN – use a pool of worker threads for

network I/O

AGGRESSIVE_SEND_AND_RECEIVE

– use dedicated thread for network I/O to

achieve a minimal latency. It is set to true

by the ThreadedSocketAcceptor/Initiator

automatically, but may be overridden in

the configuration file

StorageType persistent Type of the message storage to use.

persistent – disk storage

persistentMM – memory mapped file

transient – in-memory storage

null – no storage

Appropriate value is chosen by the

FileStore/MemoryStoreFactory, but may

be overridden in the configuration file.

QuickFIX to FIX Antenna™ C++ Migration Guide

25

QFA.Session.<Name>. EncryptMethod 1 - NONE

2 - DES

3 - PKCS_DES

4 - PGP_DES

5 - PGP_DES_MD5

6 - PEM_DES_MD

QFA.Session.<Name>. TcpBufferDisabled true If true, the Nagle algorithm on TCP/IP

connection is disabled to achieve the

minimal latency of message sending. It is

set to true by the

ThreadedSocketAcceptor/Initiator

automatically, but may be overridden in

the configuration file

QFA.Session.<Name>.
IgnoreSeqNumTooLowAtLogon

 This parameter allows to resolve ‘seqNum

too low’ problem at logon. When true -

session continues with the received

seqNum.

QFA.Session.<Name>. Backup.Host Host name to be used for a backup FIX

connection (valid for session initiators)

QFA.Session.<Name>. Backup.Port Port number to be used for backup FIX

connection (valid for session initiators)

QFA.Session.<Name>. Backup.HBI Backup session setting.

QFA.Session.<Name>. Backup.SenderSubID Backup session setting.

QFA.Session.<Name>. Backup.TargetSubID Backup session setting.

QFA.Session.<Name>.
Backup.SenderLocationID

 Backup session setting.

QFA.Session.<Name>.
Backup.TargetLocationID

 Backup session setting.

QFA.Session.<Name>.
Backup.IntradayLogoutTolerance

 Backup session setting.

QFA.Session.<Name>.
Backup.ForceSeqNumReset

 Backup session setting.

QFA.Session.<Name>. Backup.ForceReconnect Backup session setting.

QFA.Session.<Name>.
Backup.IgnoreSeqNumTooLowAtLogon

 Backup session setting.

QFA.Session.<Name>.
Backup.EnableAutoSwitchToBackupConnection

 When true, automatic switch mode is

enabled. By default automatic switch mode

is disabled.

QFA.Session.<Name>.
Backup.EnableCyclicSwitchBackupConnection

 When true, connection will be switched

from primary to backup and back until

connection will be established.

QFA.Session.<Name>. ActiveConnection primary backup - The session connects via backup

connection

restore - The session connects to the

previous active connection

Otherwise, the session connects via

primary connection.

QFA.Session.<Name>.CustomLogonFileName Path to the file containing FIX Logon

message that will be sent to the

counterparty when initiating the

connection. The message is in binary

QuickFIX to FIX Antenna™ C++ Migration Guide

26

format. If a relative path is specified, the

root folder is taken from the

engine.properties EngineRoot setting

QuickFIX to FIX Antenna™ C++ Migration Guide

27

Contact us
sales@btobits.com

Phone: +1-888-378-0666

Global Headquarters

US Client Support and Delivery Center

EPAM Systems, Inc

41 University Drive

Suite 202

Newtown, PA 18940

Phone: +1-267-759-9000

Fax: +1-267-759-8989

mailto:sales@btobits.com

